
BU MET CS 664 Christopher D. Canfield | Fall 2013 - 1 of 13 -

Ant Simulator:
Swarm Intelligence using Goal -based Agents & A*

Christopher D. Canfield
CS 664: Artificial Intelligence

Boston University Metropolitan College

I. Overview

The Canfield Ant Simulator simulates a colony of ants, with a focus on the ants' search for food. Ants lay pheromone
trails to notify other ants about food, as in the real world [7][8][9]. Over time, this gives the ants the appearance of
having a higher-level coordinating intelligence that is instructing all ants according to group goals, when in reality
each ant is fully in control of itself, and does not have any direct communication with other ants.

The project involved the creation of the following components:
¶ World Creator: random map generator
¶ Navigation Graph, with nodes & edges

¶ Ants: goal-based agents
¶ 7 ant goals
¶ A* algorithm

¶ GUI processing framework using the Observer pattern
¶ 123 unit tests + 3 test applications

II. Artificial Intelligence Components

Ants: Goal-based agents
This is the main driver of the simulation, and was the most complex component of the simulation (particularly the
implementation and testing of the ant goals). Ants and ant goals are described in detail in sections III-E and III-F.

Performance Environment Actuators Sensors
Å Is alive
Å Is not hungry

Å Colony has
food

Å Partially viewable (knows nav graph, but does not know
food or pheromone locations)

Å Partially dynamic (nav graph is static, but food
disappears and pheromones appear and wear out)

Å Navigation graph with nodes and up to 8 edges per node

Å Obstructions, food piles, ant hill, other ants (no direct
interaction), pheromones

Å Move
Å Pick up &

drop food
Å Lay

pheromone
trail

Å Eat food

Å View current
navigation node or
edge

Å Smell pheromones on
current edge, or on all
edges connected to
current node

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 2 of 13 -

Swarm Intelligence
Ant colonies appear to be smarter than individual ants. "Ants aren't smart, ant colonies are" (Deborah M. Gordan,
biologist at Stanford University) [9]. Swarm intelligence is the phenomenon of the group being smarter than the
individual, despite not having a higher-level intelligent controller to instruct the individuals. See sections III-D
through III-F for information about the implementation of this process.

A*
The A* algorithm is used by the ants to create paths from the current node to a destination. See section III-G for the
details on my implementation.

Light-blue lines are paths calculated by the A* algorithm

III. Simulation

The simulation was written in C++, and uses the following libraries:
Å Simple & Fast Multimedia Library (SFML): Provides a cross-platform object-oriented abstraction layer over

OpenGL and the platform's native windowing system. [10]
Å Boost C++ Libraries: circular array, noncopyable [11]
Å POCO C++ Libraries: UUID [12]

III -A. The App interface & related

Applications inherit from the App interface. On startup, the AppRunner calls the App's setup method, and then
continuously calls run() until the application returns false. At that point, the AppRunner then calls the App's
teardown method. Four applications were developed for this project:

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 3 of 13 -

¶ AiSimApp: The Ant Simulator. This is the primary application.

¶ AntGoalTestApp
¶ AStarTestApp
¶ GuiTestApp

The application that is compiled into the binary is specified by #defin eing various identifiers, which are listed in
main.cpp. See the Testing & Verification section for additional information regarding the three test apps.

III -B. The Simulator class

The Simulator class runs the ant simulation. Its update method is called approximately 130 times per second by the
AiSimApp. The update method, in turn, calls the update methods of the various simulation entities, including ants
and edges (to cause the pheromones to degrade over time). This is limited by the current speed of the simulation,
which can range from 0 to 120 ticks (update calls) per second, with the default being 60 ticks per second.

III -C. The World abstract class, and subclasses

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 4 of 13 -

The World abstract class is the base class for world creators. I implemented two: TestWorld, which does nothing and
is used for unit testing (because some constructors require a reference to a world), and RandomWorld, which
creates a randomly laid out 900-node world, based on the seed provided to the Random class (in the util module).

III -D. The Node & Edge classes, and related

Nodes and Edges define the navigation graph, which in turn defines where ants can go, as
well as where static objects are placed (ant hill, food piles, obstructions). Edges are also
used to calculate A* g costs, and may contain the pheromones (if placed by an ant) that are
used to give the swarm of ants the appearance of a higher-level controller.

The interfaces for these classes are relatively large, but the vast majority of the methods
are const and simply enable agents and other simulation components to get state.

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 5 of 13 -

III -E. The Ant class

Ants are goal-based AI agents. They have a desire to stay alive, by eating when they get hungry, as well as to bring as
much food to their ant hill as possible. Ants lay pheromones on edges when they are carrying food, and will follow
those pheromone trails to food depending on their current goal. Ants do not have prior knowledge of the location of
food, but they can remember up to three food locations when food is encountered. The location of the ant hill is
always known.

Ants are controlled by goals, which are described in the next section. The ant goal mechanism uses the State pattern
to switch out goals and subgoals as needed.

Ants use the Observer pattern to be notified of GUI events, such as when the user clicks on an ant (which causes
information about that ant to be output to the console).

Pseudocode for the Ant::update method, plus related methods:

Ant::update (ticks)

 if (ticks > nextHungerIncreaseTime)

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 6 of 13 -

 increase hunger by 1

 if hunger >= maxHunger

 ant has died, so call the onDeath event

 end if

 end if

 if (goal is not finished)

 goal.update()

 end if

 else

 set new goal:

 if (ant is hungry)

 set goal to AntEat

 else

 99% of the time: set goal to AntForage

 1% of the time: set goal to AntExplore

 end if

 end set new goal

 end if

end Ant::update

III-F. The Goal interface, and the AntGoal classes

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 7 of 13 -

Goals control the ant. The current goal may be set by the ant, when the previous top-level goal has finished, or by
other goals and subgoals. Ants have 7 goals and subgoals (listed below, from simplest subgoals to most complex top-
level goals). Pseudocode is listed for goals that benefit from further explanation.

1. AntMoveToNode: Instructs an ant to move one node to an adjacent node. This is the simplest subgoal, and is

used by many of the other goals.

2. AntFollowPath: Takes a target node, generates a path using A*, and moves the ant along the path. Uses
AntMoveToNode to move between individual nodes.

3. AntFindFood: Instructs the ant to attempt to find food by doing the following:
Å Check the locations of the three most recently found food piles, starting with the most recent location
Å If that does not work, select a series of random nodes in an attempt to find food or pheromones
Å If at any time pheromones are encountered, follow that path

Uses the AntMoveToNode subgoal.

Goal pseudocode:
AntFindFood

 // Ensures that the ant switches goals after a while when hungry. Otherwise,

 // it could end up starving while foraging for food, instead of searching

 // for food to feed itself .

 maxSearchAttempts = 20

 if (food was found or the number of search attempts exceeds max Search Attempts)

 finis hed = true

 return

 end if

 if (subgoal is finished)

 if (the ant's current node has food)

 foodFound = true

 else

 if (ant is hungry)

 increase number of search attempts by 1

 end if

 set new subgoal:

 if (ant's current path is not empty)

 if (last edge had pheromones)

 set path to follow the pheromone s

 else

 foll ow existing path

 end if

 set subgoal to AntMoveToNode

 // The ant holds the 3 most recently found food positions in a

 // circular array (organized as a stack , so most recently encountered

 // can be popped off) .

 else if (ant's last known food position is not empty)

 if (last edge had pheromones)

 set path to follow the pheromone s

 else

 set path to last known food position

 end if

 set subgoal to AntMoveToNode

 // Ant does not have an existing target, and ant does not know where any

 // food is located, so explore a random path in search of food & pheromones.

 else

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 8 of 13 -

 if (last edge had pheromones)

 set path to follow the pheromone s

 else

 set path to random target

 end if

 set subgoal to AntMoveToNode

 end if

 end if

 else

 subgoal.update()

 end if

end Ant FindFood

4. AntGoHome: Instructs the ant to return to the ant hill. Uses the AntFollowPath subgoal.

5. AntExplore: Instructs the ant to explore random paths, noting the location of any food it finds. Pheromones are

not followed when this goal is being pursued. The purpose of this goal, which is selected 1% of the time when a
new top-level goal is needed and the ant is not hungry, is to allow a small number of ants to periodically explore
for additional food sources, before the current food source runs out. This goal uses the AntMoveToNode subgoal.

Goal pseudocode:
AntExplore

 if (subgoal is finished)

 if (path is empty)

 target = random target node

 path = A*(currentNode, target)

 end if

 if (path is empty)

 finished = true

 else

 target = path.pop()

 set subgoal to AntMoveToNode

 end if

 else

 subgoal.update()

 end if

end AntExplore

6. AntForage: Instructs the ant to search for food, and bring the food back to the ant hill if food is found. A

pheromone trail is released while the ant is holding food. This goal is selected 99% of the time when a new top-
level goal is needed, if the ant is not hungry. Uses the AntFindFood subgoal.

Goal pseudocode:
AntForage

 if (subgoal is not finished)

 subgoal.update()

 else // The subgoal has finished.

 if (subgoal is AntFindFood)

 if (ant's current node has food)

 take food from food node

 // A circular array of the 3 most recently found food piles .

 ant.lastKnownFoodPosition.push(foodPile)

 end if

 set subgoal to AntGoHome

 else if (subgoal is AntGoHome) // Ant has reached its home.

 if (ant is holding food)

 add one food to ant hill

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 9 of 13 -

 ant is no longer holding food

 end if

 finished = true

 end if

 end if

end AntForage

7. AntEat: Instructs the ant to find food for consumption. The ant first goes to the ant hill, using the AntGoHome

goal. If no food is available there, it uses the AntFindFood subgoal to search for food in the three last known food
locations. If no food is found in those locations, the ant will randomly search locations for food and pheromones.

III -G. A*

My A* method takes a heuristic function pointer, which allows the heuristic to be changed at runtime if needed. Both
Manhattan and Straight-line heuristics were implemented, because originally I was only going to allow four degrees
of movement, which implies using the Manhattan heuristic. I later decided to increase movement to 8 degrees.

Pseudocode for heuristic functions:

Manhattan Heuristi c

 rowDifference = abs(startRow - endRow)

 columnDifference = abs(startColumn - endColumn)

 return (rowDifference + columnDifference)

Straight Line Heuristic

 rowSquared = (startRow - endRow)^2

 columnSquare = (sta rtColumn - endColumn)^2

 return squareRoot(rowSquared + columnSquared)

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 10 of 13 -

Pseudocode for A* and constructPath private method, which it uses:
A* (startNode, endNode, heuristicFunction)

 if (path from startNode to endNode previously found)

 return path

 end if

 Declare Variables:

 frontier : Priority Queue

 searched : Set

 frontier.pus h(startNode)

 while (frontier is not empty)

 lowestCost = frontier.pop()

 if (lowestCost == endNode)

 path = constructPath () // See below.

 add path to hash map of previously found paths

 return path

 end if

 for each edge in lowestCost.edges

 if (edge is not in searched)

 edge.oppositeNode .h = heuristicFunction(edge.oppos iteNode, endNode)

 edge.oppositeNode. g = edge.cost + lowestCost.g

 edge.oppositeNode.parent = lowestCost

 frontier.push(edge.oppositeNode)

 searched.add(edge.opposite Node)

 end if

 next edge

 loop

 // If no path could be calculated, return an empty path .

 return empty path

end A*

construct Path (finalNodeInPath, startNode)

 Declare Variables:

 path : Deque

 currentNode = finalNodeInPath

 while (currentNode exists and currentNode is not startNode)

 path.push(currentNode)

 cu rrentNode = currentNode.parent

 loop

end constructPath

I currently cache the results of the A* calculation in a hash table, because of the O(1) search time. However, it would
be interesting to measure whether this actually improves performance, due to the loss of locality of reference.
Regardless, with the current implementation, the simulator spends between 0.8% and 2.4% of its time in the A*
method (including methods used by A*), according to the performance profiler, so the A* search is not a bottleneck.
The range of times is due to differences in world maps: the more food there is, and the easier that food is to find, the
fewer calculations need to be done by A*, since following pheromones does not require an A* search.

IV. Testing & Verification

Because of the large scope of the project, testing was highly integrated into the development process from the start.
This gave me the confidence to refactor as needed, and resulted in a smooth final debugging process.

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 11 of 13 -

123 unit tests were written in Visual Studio, using the Microsoft
Unit Testing Framework, and another 23 JUnit tests were written in
eclipse to further test the Java implementation of my A* algorithm,
which I used for the Wumpus World project. The JUnit tests
uncovered issues with my original A* algorithm that my C++ unit
tests hadn't uncovered, because the layout of the navigation graph
used by the Wumpus World is more complex than the layout of

either my hand-created test graphs or generated graphs.

In addition to the unit tests, I implemented three test applications:

Å GUI Tester: Tests gui implementation & related aspects, including
various user input events, observer pattern implementation, drawing
items to screen, etc.

Å A* Tester: Text-based output of paths generated by A*. This allowed for
a deeper level of debugging information to be available to me than the
unit tests provided.

Å Ant Goal Tester: Seven test agents were implemented specifically to test
each individual goal. This was invaluable in debugging the goals, and in verifying that I had implemented my
design properly.

As an additional check, I ran my code through Visual Studio's static code analysis tool periodically, though this
uncovered very few issues.

Throughout the semester, I developed the project on two PCs with
different setups. This helped ensure that the code is compilable on
other PCs. To verify this, once the project was complete I installed
Visual Studio 2012 Express on my wife's Windows 7 laptop, which
had never had a compiler installed on it. The code compiled
successfully without changes.

Finally, I had friends and family test the binaries to ensure that it ran on various Windows setups (see Appendix A).
In addition to uncovering errors, I wanted to be sure that no installations would be needed, such as the Visual C++
Runtime. This testing passed without any problems.

V. Appendix A: Running the Simulator

A Windows binary is included with this project. There are no special requirements or additional installations needed
to run the application, though the Canfield Ant Simulator folder structure (/res, plus the three included dll's) should
not be changed. The application was successfully tested on the following operating systems:

¶ Windows 8.1
¶ Windows 8
¶ Windows 7

¶ Windows Vista

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 12 of 13 -

Simulation controls:
 Space Pause/Unpause
 + Increase simulation speed
 - Decrease simulation speed
 1 Show/hide navigation graph
 2 Show/hide pheromone strength
 3 Show/hide ant paths
 4 Show/hide dead ants
 5 Show/hide background
 Mouse wheel Zoom in/out
 Arrow keys Move screen up/down/left/right (only when zoomed)
 ? Display these commands in the console
 Escape Exit

The "Canfield: Ant Simulator" window must be active for these commands to work. You may need to click on the
window's title bar to activate it.

VI. Appendix B: Compiling the Code

The C++ source code, plus compiled libraries, are included with this project. Additionally, a Visual Studio 2012
solution file is included, which should be used when compiling, since all settings are properly configured. The project
was compiled successfully on three different machines using the following:

¶ Visual Studio 2012 Ultimate (Windows 8.1)
¶ Visual Studio 2012 Premium (Windows 8.1)
¶ Visual Studio 2012 Express, fresh installation (Windows 7)

Earlier versions of Visual Studio will not be able to compile the project, because C++11 features were used.

In theory, the code was written to be cross-platform. However, this was not tested, and all libraries (SFML, POCO,
Boost) will need to be recompiled on the target OS. Similarly, other Windows compilers may work, if they support
C++11, but the libraries will need to be recompiled.

VII. References

[1] S. Russell & P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition. Upper Saddle River, NJ; 2010.

[2] M. Bukland, Programming Game AI by Example. Sudbury, MA; 2005.

[3] B.C. Bridger, Chris S. Groskopf, "Fundamentals of Artificial Intelligence in Game Development," Proceedings of

the 38th annual on Southeast regional conference, April 7, 2000.

[4] Christoph Salge , Christian Lipski , Tobias Mahlmann , Brigitte Mathiak, "Using genetically optimized artificial

intelligence to improve gameplaying fun for strategical games," Proceedings of the 2008 ACM SIGGRAPH
symposium on Video games, August 09-10, 2008, Los Angeles, California.

[5] T. S. Ray, "An Approach to the Synthesis of Life," Artificial Life II , C. G. Langton, C. Taylor, J. D. Farmer, and S.

Rasmussen (eds.), Addison-Wesley, Reading, MA, pp. 371-408.

[6] Amit Patel, Amit's A* Pages [Online]. Available: http://theory.stanford.edu/~amitp/GameProgramming/

[7] A. Dussutour, S. C. Nicolis, G. Shephard, M. Beekman and D. J. T. SumpteÒȟ Ȱ4ÈÅ ÒÏÌÅ ÏÆ ÍÕÌÔÉÐÌÅ ÐÈÅÒÏÍÏÎÅÓ ÉÎ

ÆÏÏÄ ÒÅÃÒÕÉÔÍÅÎÔ ÂÙ ÁÎÔÓȟȱ The Journal of Experimental Biology. Aug 2009.

[8] -Ȣ -ÉÚÕÎÁÍÉȟ .Ȣ 9ÁÍÁÇÁÔÁ ÁÎÄ (Ȣ .ÉÓÈÉÎÏȟ Ȱ!ÌÁÒÍ 0ÈÅÒÏÍÏÎÅ 0ÒÏÃÅÓÓÉÎÇ ÉÎ ÔÈÅ !ÎÔ "ÒÁÉÎȡ !Î %ÖÏÌÕÔÉÏÎÁÒÙ

0ÅÒÓÐÅÃÔÉÖÅȟȱ Frontiers in Behavioral Neuroscience. vol. 4, article 28, June 2010.

BU MET CS 664 Christopher D. Canfield | Fall 2013 - 13 of 13 -

[9] Peter Miller, "The Genius of Swarms," National Geographic [Online]. Available:

http://ngm.nationalgeographic.com/2007/07/swarms/miller-text

[10] Simple & Fast Multimedia Library: http://www.sfml-dev.org/

[11] Boost C++ Libraries: http://www.boost.org/

[12] POCO C++ Libraries: http://pocoproject.org/

[13] Paul Bourke, "Texture Library" [Online]. Available: http://paulbourke.net/texture_colour/

