
Latency & State Consistency in
Networked Real-Time Games

Christopher D. Canfield

CS 535 Summer 2013

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

Introduction

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• In networked real-time games there is an inherent tradeoff between
latency reduction techniques and the consistency of the distributed
state [12], [14], [20]

• True of any distributed virtual environment

• By studying the impacts on users of network latency and distributed
state inconsistency, stakeholders in the games industry can make
informed decisions on which tradeoffs are appropriate in which cases

• Additional (non-game) uses for these techniques: distributed military
simulations (multiple algorithms listed in later slides were originally used
for that), virtual training simulators, etc

* See project paper for references

Impacts on User Satisfaction & Performance from
Network Latency & State (In)Consistency

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Delays under 50 milliseconds do not impact player performance [16]

• Delays over 50 milliseconds but under 100 milliseconds begin to have
a slight impact player performance, but are rarely noticed by the player
[4], [9], [12], [16], [19]

• Delays greater than 100 milliseconds are noticeable in fast-paced
real-time games with a first person perspective, such as racing games
and games in the first-person shooter genre. Player performance begins
to fall at this level. [1], [2], [16]

• Players will migrate away from FPS servers that result in a latency
greater than 150-180 milliseconds [1]

Impacts on User Satisfaction & Performance from
Network Latency & State (In)Consistency

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

In a networked rock-paper-scissors experiment using real-time video and
audio, Hashimoto and Ishibashi found that a user's mean opinion score,
declined from 4 (“Perceptible, but not annoying”) at 60 milliseconds
delay to approximately 2 (“Annoying”) at 120 milliseconds *9]

Impacts on User Satisfaction & Performance from
Network Latency & State (In)Consistency

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Chen, Huang and Lei found that absolute delay due to the network
mattered less to players than delay jitter and packet loss [3]

• “if players quit because they are frustrated by unfavorable network
conditions, on the average, 10 percent of their dissatisfaction is caused
by network latency, 20 percent by network delay jitter, 40 percent by
client packet loss, and 30 percent by server packet loss.”

• Whether a player could leave the server could be accurately predicted
based on current network conditions and length of time player had been
on the server

• Players are “sticky”: the longer they are in a game, the more likely
they are to stay, regardless of network conditions

Impacts on User Satisfaction & Performance from
Network Latency & State (In)Consistency

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Their recommendation: Allocate more resources to players when they
first connect, and then reduce the amount of resources allocated to
them over time

• Caveat: study focused on a game in the MMORPG genre, which has
different player tolerance characteristics than games in other real-time
genres, particularly first-person shooters

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Ensure consistency at the cost of additional latency

• In general, they will not allow the game/simulation to move forward
until all players are in sync

Pessimistic Methods, or “Consistency is Key”

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Requires game state from all users to be transmitted and confirmed
before the simulation clock can be incremented [5]

• Ensures complete consistency among the distributed users, at the
cost of potentially severe delay

• Used (or was used) in certain distributed military simulations, but is
not appropriate for consumer games, since there is no way to guarantee
the speed

Pessimistic Methods: Lockstep Synchronization

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Time is divided into fixed length buckets

• Update messages are allocated to different time buckets depending
on when they were issued by senders (requires clocks to be
synchronized)

• To calculate the updated global state, a participant processes all
events in the current bucket

• By introducing a synchronization delay (inherent in dividing time into
buckets), the impacts of network latency and variability is reduced [5],
[18]

Pessimistic Methods: Bucket Synchronization

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Bucket Synchronization can be modified to be optimistic:

• After a set delay, any missing updates are dead reckoned
(explained in the Optimistic Methods section), which creates
inconsistencies

Pessimistic Methods: Bucket Synchronization

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Created in response to the high overhead of the IEEE 1278 Distributed
Interactive Simulation (DIS) and BBN SIMNET military simulation
protocols

• Groups nodes (players + simulated entities) into consistency groups
based on spatial characteristics

• The state among nodes in a group is always consistent, but different
groups can be inconsistent

• Uses dead reckoning and message aggregation to further reduce
bandwidth requirements

Pessimistic Methods: Artery

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Execute events before knowing for certain that no earlier events will
arrive

• Reduces perceived latency, by ensuring that the simulation continues
updating, at the cost of inconsistency between different copies of the
game environment

Optimistic Methods, or “Latency Reduction First”

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• The next state of each game entity is predicted by all peers by using
locally available information, such as position and velocity

• A controlling application for each simulated game entity determines if
the calculations performed by the distributed peers have deviated too
far from the actual state

• If so, the controlling application sends an update message

• Reduces perceived latency and required bandwidth (fewer messages)

Optimistic Methods: Dead Reckoning

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Drawback: loss of state consistency can result in odd situations when
state is corrected

• Example:

• Suppose that a car driven by Player A in a racing simulator is
travelling in a straight line
• On Player B’s machine, a dead reckoning implementation may
predict that the car will continue moving forward, and update the
car’s position as such
• If Player A actually made a turn, the controlling entity will
eventually note the inconsistency and send an update packet
• The car will appear to “warp” to the correct position on Player B’s
machine

Optimistic Methods: Dead Reckoning

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Extends dead reckoning by enabling rollback to a previous, confirmed
state when an inconsistency is detected

• Brief overview:

• Each distributed application periodically saves a snapshot of all
simulated entities
• Each application keeps a list of events that is has received
• New events are inserted into the event list as they arrive
• When an inconsistency is detected, a rollback followed by a state
re-computation occurs, as described above

Optimistic Methods: Timewarp (aka Time Warp)

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Anti-messages are sent as part of the rollback to cancel events which
have become invalid

• Problem: these anti-messages can generate additional anti-messages
from invalidated events, which in turn can generate additional anti-
messages, etc

Optimistic Methods: Timewarp (aka Time Warp)

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Delays local events to approximately match the latency of the
network

• If the delay value required to match the network latency is too high,
local lag can be combined with dead reckoning or timewarp

• Local lag is essentially a buffering mechanism, helping to eliminate
the effects of high jitter

• If a high enough value is selected, most inconsistency can be
eliminated, but at the cost of causing noticeable lag (essentially a
pessimistic method at that point)

Optimistic Methods: Local Lag

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Runs multiple copies of the game state, each at a slight lag to the next

• Each trailing state executes all commands, but on a lag to the
foremost state

• If the system determines that its current state is invalid, it rolls back
to a previous state

• The event that caused the invalidated state is placed into the
event queue
• The event queue is replayed up to the current time to generate
the correct state

• Similar to Timewarp, but lower cost in memory (no per-event state
saves) and bandwidth (no anti-messages)

Optimistic Methods: Trailing State Synchronization

Latency Reduction & State Consistency Methods

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Designed for “high latency collaborative systems, including mobile
multiplayer games.” *2+

• Each game node operates asynchronously from all others.

• Rendezvous arbitrators ensure that each asynchronous game view
does not become too disconnected from the others

• They do this by generating target states, which are points at which
the game views can become consistent

• It is then up to the adaptation rules to push the local view toward the
target state, by controlling simulated entities and subtly bending the
rules of the game universe.

Optimistic Methods: Rendezvous

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Networked real-time game with network delay simulator
• Implemented after reading the literature described in the previous
slides

• Goals:

• Perform preliminary testing on player fairness perceptions at
varying network latency levels
• Learn or partially learn how network delay and other impacts can
be simulated for testing purposes
• Create the initial implementation for a system that can be
extended in the future to include various algorithms described in
the previous slides
• Implement an application that interacts directly with the
Transport Layer, without using an existing intermediary Application
Layer protocol, enabling the author to put into practice a small part
of what we have learned in class

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Written in C++ and uses the cross-platform Simple & Fast Media
Library (SFML)

• UDP was used at the Transport Layer, since this was true of all games
described in the literature except for MMORPGs, which frequently use
TCP

• The architecture is client-server, with certain peer-to-peer
modifications

• For example, while the server performs the goal check for all
players (i.e., it checks to see if the player has picked up the yellow
goal circle, which increments the player's points by one), the client
player performs its own movement validity checks

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Application-level packet headers consist of a one-byte packet type
identifier.

• The data payload ranges from one byte for the smallest packet type
to 16 bytes for the largest type (the server-to-client update packet).

• Network delay for the client can be simulated by delaying the send
time of the packet to the client (specified at the start of a match)

• A fast network link with a round trip time of less than 1 millisecond
was used to ensure that any delays encountered were from the
simulated delay

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Simple gameplay:

• Two opposing triangles start at opposite sides of an arena

• At match start, a yellow goal circle is randomly placed in one of
the center waypoints.

• This is generated by the server player's machine, which gives
the server player an advantage if network latency is high, since
the client won't know where the goal is. This was by design.

• Players receive one point per goal that they pick up

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Simple gameplay:

• Two opposing triangles start at opposite sides of an arena

• At match start, a yellow goal circle is randomly placed in one of
the center waypoints.

• This is generated by the server player's machine, which gives
the server player an advantage if network latency is high, since
the client won't know where the goal is. This was by design.

• Players receive one point per goal that they pick up

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Simple gameplay:

• Two opposing triangles start at opposite sides of an arena

• At match start, a yellow goal circle is randomly placed in one of
the center waypoints.

• This is generated by the server player's machine, which gives
the server player an advantage if network latency is high, since
the client won't know where the goal is. This was by design.

• Players receive one point per goal that they pick up

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Training rounds to familiarize player

• User given a sheet of paper numbered 1 to 20

• Instructed to label each game as 2 (fair), 1 (slightly unfair) or 0 (very
unfair)

• Each game used a randomly assigned additional packet delay, which
was simulated by the game, of 0, 100, 200, 300, and over 500
milliseconds

• (actual network RTT according to Windows ping utility was 0
milliseconds)

Methodology

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

Results

0 100 200 300 400 500

0

0.5

1

1.5

2

Network Delay - Milliseconds

U
se

r
Pe

rc
e

p
ti

o
n

 S
co

re

 2
 =

 f
ai

r;
 0

 =
 v

er
y

u
n

fa
ir

Impact of Network Delay on User Perception Score

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Results consistent with literature

• However, findings are only preliminary, and are not scientifically valid,
because of the small sample size

Results

Experiment: Latency Testing with Triangle Wars

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

• Re-run tests with larger sample size, and then perform proper
statistical analysis on results

• Add subset of algorithms listed in previous slides, and re-run tests

• Add ability to simulate network jitter and packet loss, in addition to
the already-implemented constant delay

• Perform the perception tests with additional simultaneous players

• Would more players distract the user from latency?

Future Research

Thank you

Latency & State Consistency in Networked Real-Time Games
Christopher D. Canfield | CS 535 Summer 2013

